牛痘病毒加帽酶说明书

（Vaccinia Capping Enzyme）

【产品中文名称】牛痘病毒加帽酶
【产品英文名称】Vaccinia Capping Enzyme
【货号信息】

编号	产品组分	货号	包装规格
GMP－VCS－VE101－ 10 kU	Vaccinia Capping Enzyme	GMP－VCS－VE101－11	$10 \mathrm{U} / \mu \mathrm{ll}, 10 \mathrm{kU}, 1 \mathrm{ml} / \mathrm{vial}$
	$10 \times$ Capping Buffer	GMP－VCS－VE101－21	$1.5 \mathrm{ml} / \mathrm{vial}$
GMP－VCS－VE101－ 1 MU	Vaccinia Capping Enzyme	GMP－VCS－VE101－13	$10 \mathrm{U} / \mu \mathrm{LI}, 1 \mathrm{MU}, 100 \mathrm{ml} / \mathrm{vial}$
	$10 \times$ Capping Buffer	GMP－VCS－VE101－23	$250 \mathrm{ml} / \mathrm{vial}$

【表达体系】大肠杆菌

【生产要求】洁净环境（C 级或 D 级）
【产品级别】GMP

【产品简介】牛痘病毒加帽酶作用于体外转录产物，其具有 RNA 三磷酸酯酶活性，鸟苷酰基转移酶活性和鸟嘌呤甲基转移酶活性，可将 7－甲基鸟嘌呤帽结构（m7Gppp）连接到 mRNA 的 5＇末端，催化 mRNA形成（m7Gppp5＇N）Cap0 帽子结构。本产品是基于公司独特的创新型功能重组蛋白生产平台 $\mathrm{SAMS}^{T M}$ ，经过大肠杆菌表达体系与纯化工艺的优化，并按照 GMP 要求生产。

【预期用途】参与 mRNA 疫苗生产过程中的加帽修饰

【储存缓冲液】 20 mM Tris－HCl， $100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT， 0.1 mM EDTA， 50% Glycerol ， 0.1% Triton X－ 100，pH 8.0

【贮存条件】 $-20 \pm 5^{\circ} \mathrm{C}$

【Vaccinia Capping Enzyme 质量标准】

项目	可接受标准
	样品条带与对照品一致
外观	包装完整，密封性能良好，无渗漏，无破损；溶液澄清
	标签信息印刷清晰，正确无误。标签䆆贴平整，无褶皱或
趐起	

【 $10 \times$ Capping Buffer 质量标准】

项目	可接受标准
外观	包装完整，密封性能良好，无渗漏，无破损；溶液澄清
	标签信息印刷清晰，正确无误。 标签黐贴平整，无褶皱或翘起
	装量 50 ml 及以下，每支／瓶中可见异物不得超过 3 个
	装量 50 ml 以上，每支／瓶中可见异物不得超过 5 个
装量	体积规格为 $1.5 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 1.5 ml
	体积规格为 $250 \mathrm{ml} / \mathrm{vial}$ ，每支／瓶装量不低于 250 ml
DNA 酶残留	阴性（LOD＝3）

$\begin{array}{|c|c|}\hline \text { RNA 酶残留 } & \text { 阴性（LOD＝3）} \\$\cline { 1 - 3 } \& 蛋白酶残留\end{array}$]$ 阴性

【产品使用步骤】

（1）加帽反应

本实验步骤适用于 $20 \mu \mathrm{l}$ 反应体系中 $10 \mu \mathrm{gmRNA}(\geq 100 \mathrm{nt}$ ）的加帽反应，且可根据实验需要放大。
a）取 $10 \mu \mathrm{~g} \mathrm{mRNA}$ 至 1.5 ml 离心管中，使用 RNase－free Water 稀释至 $15 \mu \mathrm{l}$ ；
b） $65^{\circ} \mathrm{C}$ 加热 5 min ；
c）将加热后的离心管放置冰上 5 min ；
d）按顺序加入以下组分：

组分名称	体积
经上述处理后的变性 RNA	$15 \mu \mathrm{l}$
$10 \times$ Capping Buffer	$2 \mu \mathrm{l}$
GTP $(10 \mathrm{mM})$	$1 \mu \mathrm{l}$
SAM $(2 \mathrm{mM})$	$1 \mu \mathrm{l}$
Vaccinia Capping Enzyme $(10 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$

e） $37^{\circ} \mathrm{C}$ 孵育 $30 \mathrm{~min}, ~ R N A$ 加帽完成，可进行后续实验；
f）RNA 被加帽后准备用于下游实验，若 RNA 需要加上一个 poly（A）尾，可使用 KACTUS 产品 E ． coliPoly（A）Polymerase。
（2）5’末端标记反应

本实验步骤适用于 $20 \mu \mathrm{l}$ 反应体系 5 ，末端带有三磷酸的 RNA 标记，且可根据实验需要放大，其标

记效率受反应体系中 RNA 与 GTP 的摩尔浓度比以及 RNA 样本中 GTP 含量的影响。
a）取适量的 RNA 至 1.5 ml 离心管中，使用 RNase－free Water 稀释至 $14 \mu \mathrm{l}$ ；
b） $65^{\circ} \mathrm{C}$ 加热 5 min ；
c）将加热后的离心管放置冰上 5 min ；
d）按顺序加入以下组分：

组分名称	体积
经上述处理后的变性 RNA	$14 \mu \mathrm{l}$
$10 \times$ Capping Buffer	$2 \mu \mathrm{l}$
GTP mix	$2 \mu \mathrm{l}$
SAM $(2 \mathrm{mM})$	$1 \mu \mathrm{l}$
Vaccinia Capping Enzyme $(10 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$

备注：GTP mix 为 GTP 和少量标记物，其中 GTP 储液应稀释为反应体系中 mRNA 摩尔浓度的 1－3 倍。
e） $37^{\circ} \mathrm{C}$ 孵育 30 min ，RNA 5＇末端标记完成，可准备进行后续实验；
f）RNA 被标记和加帽后用于下游实验，若 RNA 需要加上一个 poly（A）尾，可使用 KACTUS 产品 E ． coliPoly（A）Polymerase。

【注意事项】
（1）用于加帽反应的 RNA 必须经过纯化以及用 RNase－free Water 进行重悬。
（2）反应前热处理 RNA，用以去除 5 ＇末端的二级结构。
（3）若已知 RNA 5＇末端结构，可延长反应时间至 60 min ，以提高加帽效率。
（4）5＇末端标记反应中，GTP 储液应稀释为反应体系中 mRNA 摩尔浓度的 1－3 倍。
（5）建议使用 RNase Inhibitor，以增强 RNA 在反应中的稳定性，可以在反应过程中加入 $0.5 \mu \mathrm{l}$ Murine RNase Inhibitor（Cat．No．GMP－RNI－ME101）。
（6）产品应避免反复冻融。

